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1. Introduction

Constructing consistent interactions for higher-spin (HS) gauge fields is an old problem

(see [1] for recent reviews). A crucial step for its resolution in AdS spaces was taken some

years ago by Fradkin and Vasiliev [2] (see also [3]). Since then, the study of HS gauge

theories has enjoyed a remarkable renaissance and a wealth of new and interesting results

have appeared [4]–[20] (see also [21]– [25] for the earlier work).

One of the approaches to the interaction of HS gauge fields is based on the BRST-like

methods (see e.g., [26] for a review). This is particularly appealing as it resembles similar
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constructions in string field theory [27]– [28]. In particular a model of interacting massless

HS gauge fields can be obtained using a cubic vertex of the open string theory [29]. However

in the general case of interacting massless HS fields there is no analog of overlap conditions

such as that is present in the Open String Field Theory and therefore one has to consider

a general polynomial of the corresponding matter and ghost oscillators.

In [30] a systematic method for the construction of the general cubic coupling of any

three HS gauge fields in flat and AdS spaces based on the triplet construction [31]–[33] was

presented. In the present note we apply our method to the simplest case; the interaction

between one HS triplet and two massive free scalars. Despite its apparent simplicity this

is still a highly non-trivial case since it requires the construction of an infinite number of

conserved currents, made out of scalars, that couple properly to HS gauge fields. This is

also an important case since, as we will see in section 7, it elucidates the emergence of HS

gauge fields via the gauging of higher derivative symmetries of free matter Lagrangians

(see [34] for the discussion about self-adjoint operators in the gauging of HS symmetries).

In a holographic setting, our results imply the existence of an infinite set of Ward identities

involving scalar operators in boundary CFTs that are dual to HS gauge theories in AdS

spaces.

The paper is organized as follows:

In section 2 we briefly review our general method of constructing free and interacting

Lagrangians for HS gauge fields [30]–[32]. In section 3 we present the general result for the

Lagrangian cubic interaction vertices between one triplet and two massive free scalars in

flat space. We note the emergence of a pattern; the irreducible spin-s, s−2, . . . , 0/1 modes

propagated by the spin-s triplet couple independently to corresponding conserved currents

constructed from the scalars. In section 4 we outline how we obtain the general result for

AdS. The simple flat space pattern is no more valid and new interaction vertices appear at

order 1/L2. To keep our presentation clear we relegate the explicit lengthy expressions in

the appendix. In section 5 we present the explicit formulae for the spin-2 and spin-3 cases

in flat and AdS spaces. In section 6 we present the results for the cubic vertex of irreducible

HS gauge fields interacting with massive free scalars and show that our formulae reproduce

known past results [35]–[37]. Extensive discussions of conformal HS currents were presented

also in [36, 38, 39]. In section 7 we re-derive the spin-2 and spin-3 vertices in flat and AdS

spaces by an alternative method based on the idea that HS gauge fields arise from the

gauging of high derivative symmetries of free matter Lagrangians [40]–[41]. This procedure

opens up the possibility for explicit study of the HS gauge symmetry acting on scalars,

however we leave this interesting idea for a future work. Section 8 contains a summary and

the outlook of our work. Important notation and some lengthy formulae appear in the five

appendices.

2. The BRST approach to the HS cubic vertex

In this section we review the BRST approach to constructing the cubic interaction of HS

gauge fields. More details can be found in [32, 30]. We consider an AdS space with radius
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RAdS = L; the corresponding equations for flat space are simply obtained by setting the

AdS curvature to zero.

The full interacting Lagrangian can be written as [27] – [28]

L =
∑

i=1,2,3

∫

dci
0〈Φi|Qi |Φi〉 + g

(
∫

dc1
0dc2

0dc3
0〈Φ1|〈Φ2|〈Φ3||V 〉 + h.c

)

, (2.1)

where |V 〉 is the cubic vertex and g is a dimensionless coupling constant.1 To describe the

cubic interaction of HS gauge fields we introduced three vectors |Φi〉 (i = 1, 2, 3) associated

to three - generally different - Fock spaces spanned by the oscillators

[αi
µ, αj,+

ν ] = δijgµν , {ci,+, bj} = {ci, bj,+} = {ci
0, b

j
0} = δij . (2.2)

The vacuum in each one of the Fock spaces is defined as

c|0〉 = 0 , b|0〉 = 0 , b0|0〉 = 0 , αµ|0〉 = 0 . (2.3)

Each of the fields |Φi〉 (so called ”triplets”) has the form

|Φ〉 = |φ〉 + c+ b+ |D〉 + c0 b+ |C〉 , (2.4)

with

|φ〉 =
1

s!
hµ1...µs(x)αµ1+ . . . αµs+ |0〉, (2.5)

|D〉 =
1

(s − 2)!
Dµ1...µs−2

(x)αµ1+ . . . αµs−2+ |0〉 , (2.6)

|C〉 =
−i

(s − 1)!
Cµ1...µs−1

(x)αµ1+ . . . αµs−1+ |0〉 (2.7)

and the identically nilpotent BRST charge [32] in each of the Fock spaces has the form

Q = c0

(

l0 +
1

L2

(

N2 − 6N + 6 + D − D2

4
− 4M+M + c+b(4N − 6)

+b+c(4N − 6) + 12c+bb+c − 8c+b+M + 8M+bc

))

+c+l + cl+ − c+cb0 (2.8)

with

l0 = gµνpµpν , l = αµpµ, l+ = αµ+pµ , (2.9)

and

N = αµ+αµ +
D
2

, M =
1

2
αµαµ . (2.10)

The momentum operator pµ is defined as [42]

pµ = − i
(

∇µ + ωab
µ α+

a α b

)

, αa = ea
µαµ , (2.11)

1Each term in the Lagrangian (2.1) has length dimension −D. This requirement holds true for each

space-time vertex contained in (2.1) after multiplication by an appropriate power of the length scale of the

theory, as discussed in [30].
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where ea
µ and ωab

µ are the vierbein and the spin connection of AdS and ∇µ is the AdS covari-

ant derivative. The Lagrangian is invariant up to terms of order g2 under the nonabelian

gauge transformations

δ|Φi〉 = Qi|Λi〉 − g

∫

dci+1
0 dci+2

0 [(〈Φi+1|〈Λi+2| + 〈Φi+2|〈Λi+1|)|V 〉] + O(g2) , (2.12)

with gauge transformation parameters

|Λi〉 = bi,+|λi〉 =
i

(s − 1)!
λi

µ1µ2...µs−1
(x)αi,µ1+αi,µ2+ . . . αi,µs−1+b+|0〉 , (2.13)

provided that the vertex satisfies the BRST invariance condition

Q̃|V 〉 = 0 , Q̃ =
∑

i

Qi. (2.14)

The vertex operator |V 〉 has ghost number +3 and its structure is

|V 〉 = V |−〉123, |−〉123 = c1
0c

2
0c

3
0 |0〉1 ⊗ |0〉2 ⊗ |0〉3 , (2.15)

where V is an unknown function of the rest of the oscillators with ghost number zero. Note

that equation (2.14) determines the vertex up to Q̃-exact terms

δ|V 〉 = Q̃|W 〉 , (2.16)

where |W 〉 is an operator with total ghost number +2. The BRST-exact terms correspond

to the ones which can be obtained by field redefinitions from the free Lagrangian. To

simplify the analysis of equation (2.14) we define the operator

Ñ = αµ,i+αi
µ + bi,+ci + ci,+bi . (2.17)

This operator commutes with the BRST charges Qi. This means that the vertex can be

expanded in a sum of terms, each with fixed eigenvalues K of the operator Ñ as

|V 〉 =
∑

K

|V (K)〉 . (2.18)

Therefore, equation (2.14) can be split into the set of algebraic equations

∑

i

QiV (K) = 0 (2.19)

for each value of K. The systematic solution of these equations determines the type the of

cubic vertex.

3. The cubic vertex in flat space

In this section we will use our general approach to construct the cubic coupling of an HS

triplet with two scalars in flat space. The corresponding coupling for irreducible HS fields

has been discussed [44] and more recently in [35, 37]. The merit of considering the triplet
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is twofold. Firstly, our general BRST construction is systematic, can be straightforwardly

generalized to AdSD and is relevant for string field theory constructions. Secondly, our

construction gives rise to the idea that HS gauge fields arise from the gauging of higher

derivative symmetries of free matter Lagrangians.

To proceed, we put the triplet of spin s in Fock space 3 and the two scalars φ1 and φ2

into Fock spaces 1 and 2. Therefore, the matter and complex ghost oscillators appear only

in Fock space 3. This allows us to write down the most general polynomial in terms of the

expansion in ghost variables as (see appendix A for the definition of the various operators

used below)

〈V | = 123〈−|
{

X1 + X2
33γ

33 + X3
3jβ

3j
}

, j = 1, 2, 3 , (3.1)

where

X1 = X1
n1,n2,n3;m3,k3;p3, (l10)

n1(l20)
n2(l20)

n3(l3)m3(I3)k3(M33)p3 , (3.2)

and with the same expansions for the coefficients X2
33 and X3

3j . We will apply the field

redefinition (FR) scheme outlined in [30] in order to eliminate the li0 from all three ma-

trix elements, and the l3 dependence from X1 and X2. This amounts to removing the

indices n1, n2, n3 from the expressions of X1, X2
33 and X3

3j . Then, the BRST invariance

condition (2.14) simplifies to

123〈−|(I3)
k3 (l33)

m3 (M33)
p3

[

−X3
31;k3,m3,p3

l110 − X3
32;k3,n3,p3

l220 −

X3
33;k3,n3,p3

l330 + δm3,0(l
+
33 X1

k3,0,p3
− l33 X2

33;k3,0,p3
)
]

= 0 . (3.3)

We can solve (3.3) to derive

X3
31;0,k3−1,p3

= k3X
1
0,k3,p3

,

X3
32;0,k3−1,p3

= −k3X
1
0,k3,p3

,

X2
33;0,k3,p3−1 = −p3X

1
0,k3,p3

,

X3
33;m3,k3,p3

= 0 ,

X3
ij;m3 6=0;k3,p3

= X3
33;m3 6=0;k3,p3

= X1
m3 6=0;k3,p3

= 0 . (3.4)

For a triplet of spin-s the solution takes the form (we drop the m3 index from now on):

〈V | = 123〈−|
{

X1
k3,p3

− (p3 + 1)X1
k3,p3+1γ

33,+

+(k3 + 1)X1
k3+1,p3

β31,+ − (k3 + 1)X1
k3+1,p3

β32,+
}

(I+,3)k3(M+,33)p3 , (3.5)

with

s = 2p3 + k3, X1
k3,p3

= 2p
3 Cs,p3

k3 = 0, 1, .., s . (3.6)

Using the “momentum conservation” condition p1
µ + p2

µ + p3
µ = 0 and the solution above

we can write the gauge transformation rules for scalars (2.12) in the form

δφa = g

[ s−1

2
]

∑

p=0

ξab (s − 2p) Cs,p

s−1−2p
∑

r=0

(

s − 1 − 2p

r

)

2r

(∂µr+1 . . . ∂µs−1−2pλ[p]
µ1...µs−1−2p

) (∂µ1 . . . ∂µrφb) (3.7)

ξ12 = (−1)s−1ξ21 = −1, ξ11 = ξ22 = 0 a, b = 1, 2 , (3.8)
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where Cs,p are arbitrary parameters. Note that the gauge transformations of the scalars

are nonabelian, whereas the gauge transformations of the fields in the spin-s triplet remain

abelian

δhµ1...µs = ∂{µ1
λµ2...µs}, δCµ1...µs−1

= ¤λµ1...µs , δDµ1 ...µs−2
= ∂µλµ,µ1...µs−2

.. (3.9)

At this point we should emphasize that we have not imposed any symmetry between the

scalars φa. It is obvious though from (3.8) that for HS triplets with s odd (s = 2k + 1) one

needs at least two different real scalars (or alternatively one complex scalar) to have a non-

zero coupling.2 The simple example of this is the s = 1 case where we find linearized scalar

electrodynamics. For even s HS triplets (s = 2k) the condition (3.8) gives no obstruction

to coupling with a single real scalar.

Finally, after some rather lengthy rearrangement we obtain the cubic interaction terms

in the Lagrangian as

Ls00 =

∫

ddx

{ [ s
2
]

∑

p=0

Cs,p W [p]
µ1...µs−2p

×

s−2p
∑

r=0

(

s − 2p

r

)

(−1)r (∂µ1 . . . ∂µrφ1) (∂µr+1 . . . ∂µs−2pφ2) + h.c.

}

=

∫

ddx

[ s
2
]

∑

p=0

Cs,p Wp · Js−2p + h.c. , (3.10)

where we have used the binomial coefficients

(

n

m

)

and [ s
2 ] is the integer part of s

2 . Wp is

defined in [31]

Wp = h[p] − 2p D[p−1] , δWp = ∂Λ[p] ,

and

Js−2p =

s−2p
∑

r=0

(

s − 2p

r

)

(−1)r (∂µ1 . . . ∂µrφ1) (∂µr+1 . . . ∂µs−2pφ2) . (3.11)

The fields Wp define a chain of lower spin fields contained in the triplet as can easily be

seen from their gauge transformation properties (3.11). They are rank s − 2p symmetric

tensors. Hence, the currents of (3.11) are also symmetrized and by virtue of the trans-

formation properties (3.11) are conserved. We see a pattern emerging: given a general

free scalar Lagrangian we can construct the series of spin-s, s − 2, . . . , 0/1 symmetric con-

served currents (3.11) that couple properly to a spin-s triplet. In section 7 we will try to

understand the deep reason for the existence of such currents.

2Indeed setting φ1 = φ2 in (3.7) and taking into account (3.8) leads into an inconsitency for s-odd while

it is allowed for s-even.

– 6 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
1

4. The cubic vertex in AdS

In this section we present the construction of the cubic vertex of a triplet coupled to two

massive free scalars in AdS space. In this case the calculations are rather more involved,

nevertheless we will be able to obtain a relatively simple result for the vertex.

The vertex still has the form (3.1). Next, we choose an FR (field redefinition) scheme

where one can eliminate all lii0 dependence in (A.3) and set X3
33 = 0 in (3.1). With

this choice we are able to eliminate any li dependence from X2
33. Therefore one has the

expansion of the vertex

〈V | = 123〈−|(I3)
k3(l33)

m3(M33)
p3

{

X1
k3,m3,p3

+ X2
33;k3,0,p3

γ33

+X3
31;k3,m3,p3

β13 + X3
32;k3,m3,p3

β23
}

. (4.1)

The BRST invariance gives the equation

123〈−|(I3)
k3 (l33)

m3 (M33)
p3

{

−X3
31;k3,m3,p3

(

l110 − 2D − 6

L2

)

− (4.2)

X3
32;k3,m3,p3

(

l220 − 2D − 6

L2

)

+ l+33X
1
k3,m3,p3

− l33δm3,0X
2
33;k3,0,p3

}

= 0 .

In order to arrive at the equivalent of (3.4) we will have to commute all creation operators

α+,3
µ to the left but we will also have to eliminate one of the three momenta i.e., pµ,3 using

”momentum conservation”. In flat space commutativity of momenta makes this a very

easy task. In AdS this becomes rather involved due to the relation (C.1) (see also [30]).

The rules one should apply are the following:3

• In order to use ”momentum conservation” we move the operators pµ
3 to the far left of

the expression. Then we substitute pµ
1 +pµ

2 +pµ
3 = 0. For example, instead of writing

(l32)pρ,3(l32)p
ρ
2 = pρ,3(l32)(l32)p

ρ
2 , (4.3)

which translates to
∫

dDx
√−g(∇ρΛµν)(∇µ∇ν∇ρφ

2)φ1 (4.4)

we use

−(p1
µ, + p2

µ)(l32)(l32)p
µ
2 , (4.5)

which translates into

−
∫

dDx
√−gΛµν [(∇µ∇ν∇ρφ2)(∇ρφ

1) + (∇ρ∇µ∇ν∇ρφ
2)φ1] , . (4.6)

• We will then use the equations of appendix D to move any ”non-contracted” momenta

pi
µ, i = 1, 2 to the right until they form operators l110 , l220 , l31 or l32 with operators

p1
µ, p2

µ or α3
µ. In the present example we should push the operators p1

µ and p2
µ to the

3We set L2 = 1 in what follows and restore it at the end by dimensional analysis.
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right until they form the operators l110 and l120 when combined with pµ
2 . This process

will generate terms proportional to 1
L2 . For the example above they are

−
∫

dDx
√−g

1

L2
[Λµ

µ(¤φ2)φ1 + (1 − 2D)Λµν(∇µ∇νφ
2)φ1] (4.7)

which can be seen from the second term in (4.6) when pushing the covariant derivative

∇ρ to the right.

• We will commute creation oscillators to the left. In doing so we will once more

generate non-contacted momenta pµ,i i = 1, 2 which in turn have to be pushed to the

right and will generate further 1/L2 terms as explained in the previous step.

• Finally the ordering rule is that all operators l110 , l220 which do not commute with I3,

and l3, are to be brought to the extreme right of the equation so that we compare

operator expressions which have the same ordering.

This procedure results in some quite lengthy equations but our choice of FR scheme

which has eliminated X3
33 simplifies the problem. Actually, we have to perform the manipu-

lations described above only for the third and fourth terms in (4.2). For the fourth terms we

just push the operator pµ,3 to the left, then use ”momentum conservation” and then push

the operator pµ,1 + pµ,2 to the right as described above. The third term is the hardest one

since it requires performance of commutators both among momenta and among oscillators.

The solution for generic triplet is quite involved but straightforward. In the appendices

we give some explicit formulae that are used in the manipulations described above. The

full solution for the triplet will not be presented here. Instead, as an illustration of our

technique we present the two simplest examples describing the interaction of spin-2 and

spin-3 triplets with two massive free scalars.

5. Explicit examples

5.1 Spin-2 with two scalars

Since the oscillators αi,+
µ , ci,+ and bi,+ occur only in the third Fock space we omit the index

i for them in what follows. The field will will using are

|Φ1〉 = φ1(x)|0〉, |Φ2〉 = φ2(x)|0〉, (5.1)

|Φ3〉 =

(

1

2!
hµν(x)αµ+αν+ + D(x)c+b+ − iCµ(x)αµ+c3

0b
+

)

|0〉 , (5.2)

|Λ〉 = iλµ(x)αµ+b+|0〉 . (5.3)

The Lagrangian has the form

L = Lfree + Lint , (5.4)

Lfree = (∂µφ1)(∂
µφ1) + (∂µφ2)(∂

µφ2) + m2(φ2
1 + φ2

2) + (∂ρhµν)(∂ρhµν)

−4(∂µhµν)Cν − 4(∂µCµ)D − 2(∂µD)(∂µD) + 2CµCµ , (5.5)

Lint = C2,0 (hµν(∂µ∂νφ1)φ2 + hµν(∂µ∂νφ2)φ1 − 2hµν(∂µφ1)(∂νφ2))

−C2,1 φ1φ2(h
µ
µ − 2D) . (5.6)
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The relevant gauge transformations are

δφ1 = C2,0 (2λµ∂µφ2 + φ2∂µλµ) , (5.7)

δφ2 = C2,0 (2λµ∂µφ1 + φ1∂µλµ) , (5.8)

δhµν = ∂µλν + ∂νλµ, δCµ = ¤λµ, δD = ∂µλµ . (5.9)

According to our general construction, given in the section 2 we have obtained the cubic

vertex which involves two different scalars and the triplet with higher spin 2. To obtain the

interaction of a single scalar with the spin-2 field we need to set φ1 = φ2.
4 It should also

be noticed that for φ1 = φ2 (5.6) is equivalent to the linearized interaction of a scalar field

with gravity as we explain in section 7.1. and in particular in equations (7.4) and (7.6).

The generalization for the coupling of a spin-2 triplet with an arbitrary number of scalar

fields n goes in an analogous manner with the constants C2,0 becoming n × n matrices.

Similar things apply to the couplings of scalars with any HS triplet. For simplicity in what

follows we will discuss only the two scalar case which the reader can generalize easily to

the n scalar case.

In AdSD we replace ordinary with covariant derivatives. There will be no other changes

for the gauge transformation rules (i.e., for all fields δAdS = δ) (5.9) except for

δAdSCµ = δCµ +
1 −D

L2
λµ , (5.10)

The free Lagrangian is modified to include the standard AdS ”mass -terms” of order 1/L2

∆Lfree = − 1

L2
(2hµ

µhν
ν − 16hµ

µD + 2hµνhµν + (4D + 12)D2 + (2D − 6) (φ2
1 + φ2

2)) . (5.11)

The interaction part also changes and gets an additional piece

∆Lint. = C2,0
D − 1

L2
Dφ1φ2 . (5.12)

This is an additional interaction of the D scalar with a ”spin-0” current.

5.2 Spin-3 with two scalars

The spin-3 triplet is described by the field

|Φ3〉 =

(

1

3!
hµνρ(x)αµ+αν+αρ+ + Dµ(x)αµ+c+b+ − i

2
Cµν(x)αµ+αν+c3

0b
+

)

|0〉, (5.13)

|Λ〉 =
i

2
λµν(x)αµ+αν+b+|0〉 . (5.14)

The relevant scalar and gauge transformations are

δφ1 = 3i C3,0 (4λµν∂µ∂νφ2 + φ2∂µ∂νλ
µν + 4(∂µφ2)(∂νλµν)) + i C3,1 φ2λ

µ
µ , (5.15)

δφ2 = −3i C3,0 (4λµν∂µ∂νφ1 + φ1∂µ∂νλµν + 4(∂µφ1)(∂νλµν)) − i C3,1 φ1λ
µ
µ , (5.16)

δhµνρ = ∂µλνρ + ∂νλµρ + ∂ρλµν , δCµν = ¤λµν , δDµ = ∂νλ
ν
µ . (5.17)

4Notice that setting i.e. φ2 = 0 is meaningless since in our formalism that would mean to consider two

Hilbert spaces, hence no cubic interaction vertex.
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The free and interacting parts of the Lagrangian have the form

Lfree = (∂µφ1)(∂
µφ1) + (∂µφ2)(∂

µφ2) + m2(φ2
1 + φ2

2) + (∂τhµνρ)(∂
τhµνρ) (5.18)

−6(∂ρh
µνρ)Cµρ − 12(∂µCµν)Dν − 6(∂µDν)(∂

µDν) + 3CµCµ ,

Lint. = i C3,0 (hµνρφ1∂µ∂ν∂ρφ2 − hµνρφ2∂µ∂ν∂ρφ1 − 3hµνρ(∂µ∂νφ2)(∂ρφ1)

+3hµνρ(∂µ∂νφ1)(∂ρφ2)) + i C3,1 (hµν
ν − 2Dµ)(φ1∂µφ2 − φ2∂µφ1) + h.c. (5.19)

Note that in this case, had we set φ1 = φ2 the interaction would vanish. Unlike the

previous example for the case of an interacting triplet with the higher spin 3 with two

scalars one cannot put the scalars φ1 and φ2 to be equal to each other so one needs a

complex scalar in analogy with scalar electrodynamics. There is one more difference with

respect to the previous example, namely when doing the deformation to the AdSD case ,

apart from changing ordinary derivatives to covariant ones, both the Lagrangian and gauge

transformation rules for scalars get deformed. Namely one has

∆Lfree = − 1

L2
(6hµρ

µ hν
νρ − 48hµν

µ Dν − (D − 3)hµνρh
µνρ +

+18(D + 3)DµDµ + (2D − 6) (φ2
1 + φ2

2)) (5.20)

∆Lint = i C3,0
6D
L2

Dµ (φ1∇µφ2 − φ2∇µφ1) + h.c. (5.21)

δAdSφ1 = δ0φ1 − i C3,0
6

L2
λµ

µφ2, δAdSφ2 = δφ2 + i C3,0
6

L2
λµ

µφ1, (5.22)

δAdSCµν = δCµν +
2(1 −D)

L2
λµν +

2

L2
gµνλρ

ρ. (5.23)

6. Irreducible HS gauge field coupled to scalars in AdS

In this section we will study the much simpler case of an irreducible HS field in AdS coupled

to two massive free scalars. From the triplet we readily find the irreducible spin-s gauge

field upon imposing the conditions [31]

Wp = Λ[p] = 0, p ≥ 1 , (6.1)

with the definitions (3.11). Note that this corresponds to setting the compensator field

of [31] to zero. The corresponding Lagrangian formulation which gives the equation (6.1)

as a equation of motion is available [43, 32] but since it is more complicated we add

the equation (6.1) to triplet ”by hand”. The above conditions lead to traceless gauge

parameters and double-traceless gauge fields, namely (′ denotes the trace)

φ
′′

= 0 → (M33)
2 |φ3〉 = 0 , (6.2)

λ
′

= 0 → M33 |Λ3〉 = 0 .

This simplifies the calculations since the only non-vanishing matrix elements are now

X1
s−2p,0,p=0,1, X3

31;s−2p−1,0,p=0 and X2
33;s−2p−2,0,p=0. The computation follows the steps
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of (4.2) but in this case we keep only terms up to the first power of 2M33 = X2 (see the

appendix E for details). The final result is

X3
31;s−1,0,0 = −X3

32;s−1,0,0 = sX1
s,0,0 , (6.3)

X2
33,s−2,0,0 = −X1

s−2,0,1 +

(

s − 1

3
(2s2 + (3D − 4)s − 6) − 2(s − 2)

)

X1
s,0,0. (6.4)

Based on the solution above the gauge transformation is given by the direct covari-

antization of (3.7) for p = 0. The cubic interaction is given by

Ls00 = Cs,0

∫

dDx
√

g

{

φ · J∇
s +

(

s − 1

6L2
[2s2 + (3D − 4)s − 6] − (s − 2)

L2

)

φ
′ ·J∇

s−2

}

+ h.c.

(6.5)

where the currents J∇
s and J∇

s−2 are the AdS covariantizations of the corresponding flat

symmetric ones in (3.11), however only the double-traceless part of Js and the traceless part

of Js−2 survive. The interaction Lagrangian is a function of just one unknown normalization

constant Cs,0.

Let us now discuss our result (6.5). Firstly, the flat space restriction of (6.5), (i.e.

dropping the 1/L2 terms), implies that an irreducible spin-s HS gauge field couples to

totally symmetric, conserved currents. These currents coincide with the ones obtained by

Berends et. al. in [44]. For s ≥ 4 only the double-traceless part of Js survives.

In AdS, we define the modified current

JAdS
s = J∇

s +

(

s − 1

6L2
[2s2 + (3D − 4)s − 6] − (s − 2)

L2

)

g J∇
s−2 , (6.6)

where g is the AdS metric. This current is not conserved but satisfies5

[ ∇ · JAdS
s ]traceless = 0 . (6.7)

This condition implies that the covariantized flat spin-s current J∇
s fails to be conserved

by order 1/L2 terms.

A few more comments are in order here. In flat space, the conserved currents Js are

not the only ones that couple consistently to irreducible HS gauge fields. They can be

modified, at will, by terms whose divergence gives zero upon contraction with the traceless

gauge parameter λ. We fixed this freedom by imposing the conditions (6.1) i.e. setting

compensator field to zero. In [35] an additional single zero trace condition was used for

the conserved currents in order to uniquely fix the form of the higher-spin currents in flat

space. This condition was generalized in AdS by [37]. In the above works, bulk conformal

(or Weyl) invariance played a crucial role. We believe that our approach is more general

since our HS gauge fields are coupled generically to massive scalars. It is also satisfying

that our approach is naturally tied to BRST, as we believe that this is relevant for the

application of our results to string theory.

5Remember the rule (6.2) applied to our computation in the traceless case. This means we dropped all

terms proportional to any power of the metric g in the BRST computation
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7. An alternative derivation of the cubic couplings

In this section we present an alternative derivation of the cubic interaction vertices of free

massive scalars with HS triplets. Although not yet under total control, the method is a

generalization of the standard Noether gauging in field theory and is based on a surprisingly

simple symmetry of the mass term in the free Lagrangian. We present here explicitly the

spin-2 and spin-3 coupling and leave the discussion of the symmetry and the spin-s cases,

with s ≥ 4 for the future.

7.1 Free massive scalars coupled to the spin-2 triplet

Consider the Lagrangian for a massive free scalar field in flat space

L =
1

2
(∂µφ)(∂µφ) +

1

2
m2φ2 . (7.1)

The idea is that the spin-2 triplet will emerge through the gauging of a symmetry of the

above. The spin-2 triplet involves6 the unconstrained symmetric field hµν , the auxiliary

scalar D, while the gauge parameter is the vector λµ. We are looking for a transformation

of the fields φ that induces a change of (7.1) of the form

δL = (∂µλν)Tµν =
1

2
δhµνTµν . (7.2)

Had we found such a transformation, we would conclude; first that Tµν is a conserved

current and second that the interaction of the massive free scalars with the triplet is of the

form

Lint = −c1
1

2
hµνTµν + c2(h

′ − 2D)T . (7.3)

c1 and c2 are arbitrary constants. Notice that gauge invariance cannot determine the

”spin-0 current” T since the variation of the second term identically vanishes.

At this moment one might think we are just describing the gauging of diffeomorphisms.

Indeed, using δφ = c1ǫµ∂µφ one finds the canonical energy-momentum tensor

T can
µν = (∂µφ)(∂νφ) − ηµνL . (7.4)

However, this is not what the BRST analysis gives, both for the transformation of scalars

and for the conserved spin-2 current Tµν . Instead, we will look for a new principle that

may fix the scalar field transformations not only for the spin-2 case but for HS as well.

To this effect, consider the most general infinitesimal (i.e. involving one derivative)

transformation of scalars with gauge parameter the vector λµ

δφ = c1(λ
µ∂µ + κ(∂ · λ))φ . (7.5)

Next we demand that (7.5) leaves invariant the mass term in (7.1) up to total derivatives

(that do not play a role in the action). This uniquely determines the parameter κ = 1/2 and

reproduces the corresponding transformation for scalars (5.7) or (5.8) (we can set φ1 = φ2

6In the section we always solve the algebraic equation for the fields C.
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there). It is important to note that for κ = 1/2 (7.5) is not a Weyl transformation.

Using (7.5) we can vary the kinetic term in (7.1) and we straightforwardly obtain the

conserved current

Tµν =
1

2
((∂µφ)(∂νφ) − φ∂µ∂νφ) , (7.6)

which coincides with the corresponding conserved current in (5.6). It should be noted

that (7.6) and the canonical energy-momentum tensor (7.4) give rise to the same con-

served quantitites (energy and momentum) on-shell. Hence, we expect that the transfor-

mation (7.5) is actually equivalent to diffeomorphisms, the additional term being equivalent

to a Field Redefinition in the BRST language.

Next we move to AdS. We covariantize the derivatives in the transformation (7.5) and

we observe that it still leaves the mass term invariant up to total derivatives. However, the

variation of the kinetic term is now different. Up to total derivatives we obtain

δL = c1
1

2
(∇µλν)

(

(∇µφ)(∇νφ) − φ∇µ∇νφ − D − 1

4L2
ηµνφ

2

)

. (7.7)

Hence, in AdS the coupling is modified as

−c1
1

2
hµνTµν → −c1

[

1

2
hµνT∇

µν − D − 1

8L2
Dφ2

]

, (7.8)

with T∇
µν denoting the covariantized current. This is in agreement with the result (5.12).

7.2 Free massive scalars coupled to the spin-3 triplet

In this case we must have two different scalars to begin with. The free Lagrangian is

L =
1

2
(∂µφi)(∂µφi) +

1

2
m2φ2

i , i = 1, 2 . (7.9)

The spin-3 triplet involves the symmetric tensor hµνρ, the vector Dµ, while the gauge

parameter is the symmetric tensor λµν . Hence, under the scalar field transformation we

expect that the free Lagrangian will vary as

δL = q1(∂
µλνρ)Tµνρ + q2(∂

µλ′)Tµ , (7.10)

with q1 and q2 arbitrary constants. This would imply that the coupling to the triplet is

Lint = −q1
1

3
hµνρTµνρ − q2(h

µν
ν − 2Dµ)Tµ . (7.11)

Notice the presence of the spin-1 conserved current Tµ and the fact that q1 and q2 have

different dimensions.

To construct the spin-3 current we seek first the most general scalar field transformation

that involves the gauge parameter λµν (and not its trace), that leaves the mass term

invariant. A simple calculation gives the result7

δφi = q1 (λµν∂µ∂ν + (∂µλµν)∂ν + B(∂µ∂νλµν)) φjǫij , (7.12)

7Note the similarity with the generalized Lie derivative obtained in the last of [8].
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where we use the totally antisymmetric tensor ǫij, i, j = 1, 2. We note that the param-

eter B cannot be fixed by requiring invariance of the mass term. However, applying the

transformation (7.12) to the kinetic term of (7.9) we get

δL = q1(∂
µλνρ) ((2B − 1)(∂µ∂νφi)(∂ρφj) + B(∂µφi)(∂ν∂ρφj) + B(∂µ∂ν∂ρφi)φj) ǫij. (7.13)

Symmetrizing the current, in order to produce the δhµνρTµνρ term, we find B = 1/4, in

agreement with the corresponding scalar fields transformations (5.15) and (5.16). The

conserved spin-3 current we find is

Tµνρ =
1

4
((∂µ∂ν∂ρφi)φj − 3(∂µ∂νφi)(∂ρφj)) ǫij , (7.14)

which coincides (up to an overall numerical factor) with (5.19).

Passing on to AdS, we first notice that the covariantization of the transformation (7.12)

with B = 1/4 leaves the mass term invariant. However, the variation of the kinetic term

is now altered. Alter a lengthy calculation we find that in AdS the coupling is modified as

−q1
1

3
hµνρTµνρ → −q1

[

1

3
hµνρT∇

µνρ −
1

2L2

(

2

3
hµν

ν − (D + 1)Dµ

)

T∇
µ

]

, (7.15)

where the covariantized spin-1 current is

T∇
µ = (∇µφi)φjǫij . (7.16)

This result is in agreement with the corresponding result of the BRST analysis (5.21) for

s = 3. Indeed, a piece of (7.15) proportional to hµ−2Dµ can be associated to a modification

of the gauge transformation as in (5.22) and the remaining can be seen as a modification

of the coupling. Nevertheless, a highly non-trivial check of (7.15) is that when we set

h′
µ = 2Dµ we get the result (6.6) which was gotten by a totally independent method. The

term involving q2 in the interaction (7.11) is simply modified by Tµ → T∇
µ .

8. Summary and outlook

We have applied the general BRST procedure of [30] to construct the cubic interaction

Lagrangian vertex of HS triplets coupled to free massive scalars. Although this is the

simplest possible case of HS interactions, it still involves considerable technical tasks. We

were able to give closed expressions for the vertex in flat and AdS spaces, however, the

AdS expressions are still quite involved.

The cubic vertex in flat space has an interesting structure. Namely, the spin-s, s −
2, . . . , 0/1 modes that are propagated by a spin-s triplet couple independently to corre-

sponding conserved currents constructed from the scalars. In flat space these are the

currents constructed long ago by Berends et. al. [44]. In AdS, the situation changes and

generically both the gauge variations and the couplings are deformed by 1/L2 corrections.

Although there might be a pattern for the AdS deformation we were not able to find it.

We can pass to irreducible HS modes by simply setting the compensator fields [31] to zero.

This gauge choice allows us to use the same symmetric and conserved currents found above
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for the coupling of scalars to irreducible HS gauge fields in flat space. Again, in AdS the

currents are deformed by 1/L2 terms. We never use conformal or Weyl invariance in our

construction as in the works [35, 37]. The detailed expressions for the spin-2 and spin-

3 cases are given. The latter results are reproduced by an alternative method based on

the idea that HS gauge fields arise via the gauging of higher-derivative symmetries of free

matter Lagrangians.

There are many interesting applications and extensions of our work. Since we were

able to couple HS gauge fields to massive scalars our results can be readily used in hologra-

phy. In particular, an obvious implication of our results is the existence of an infinite set of

Ward identities associated to composite scalar operators in conformal field theories dual to

HS gauge theories.8 Also, our calculations are the first step towards the construction of the

Lagrangian cubic vertex of HS gauge fields with spins s 6= 0 in AdS. The holographic inter-

pretation of such a calculation will give the three-point functions of the energy momentum

tensor and of an infinite set of higher spin conserved currents in the boundary CFT. This

way we hope to understand the meaning of the parameters present in three-point functions

of conserved currents of generic CFTs [45]. These issues will be studied in a forthcoming

work.

Finally, a few words are reserved for the alternative derivation of the cubic couplings. A

scalar field deformation in terms of a vector-like gauge parameter λµ is simply associated

to diffeomorphisms. It would be extremely interesting to understand the origin of our

higher-derivative scalar transformations, those that involve tensor gauge parameters, that

keep the mass term invariant. It is conceivable that they indicate a broader structure for

the underlying ”spacetime”, perhaps one that involves tensor coordinates. It would also be

interesting to study the algebraic structure of our higher-derivative transformations. We

intent to come back to these exciting questions in the near future.
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A. Basic definitions

A.1 Definition of |V 〉 and |W 〉
We define two linearly independent combinations of variables with ghost number zero

γij,+ = ci,+bj,+, βij,+ = ci,+bj
0 . (A.1)

8Similar ideas were discussed in [40].
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Then, the most general expansion of the vertex in terms of ghost variables has the form

|V 〉 =
{

X1 + X2
ijγ

ij,+ + X3
ijβ

ij,+ + X4
(ij);(kl)γ

ij,+γkl,+ + X5
ij;klγ

ij,+βkl,+ +

+X6
(ij);(kl)β

ij,+βkl,+ + X7
(ij);(kl);(mn)γ

ij,+γkl,+γmn,+ + X8
(ij);(kl);mnγij,+γkl,+βmn,+ +

+X9
ij;(kl);(mn)γ

ij,+βkl,+βmn,+ + X10
(ij);(kl);(mn)β

ij,+βkl,+βmn,+
}

|−〉123 . (A.2)

The coefficients X l depend only on operators αi+ and pi, which means that they can be

written as

X l
(... ) = X l

n1,n2,n3;m1,k1,m2,k2,m3,k3;p1,p2,p3,r12,r13,r23(... )

(l10)
n1 . . . (l+,1)m1(I+,1)k1 . . . (M+,11)p1 . . . (M+,12)r12 . . . (A.3)

where

lij0 = (l110 , l220 , l330 ) = (l10, l
2
0, l

3
0) lij = (l1, I1, l2, I2, l3, I3), (A.4)

I1 = αµ,1(p2
µ − p3

µ), I2 = αµ,2(p3
µ − p1

µ), I3 = αµ,3(p1
µ − p2

µ), (A.5)

li = lii, M ij =
1

2
αiµαj

ν (A.6)

In a similar manner one has the following expansion for the operator |W 〉

|W 〉 =
{

W 1
i bi,+ + W 2

i bi
0 + W 3

i;jkb
i,+γjk,+ + W 4

i;jkb
i,+βjk,+ + W 5

i;jkb
i
0β

jk,+ +

W 6
i;(jk);(lm)b

i,+γjk,+γlm,+ + W 7
i;jk;lmbi,+γjk,+βlm,+ + W 8

i;(jk);(lm)b
i,+βjk,+βlm,+ +

W 9
i;(jk);(lm)b

i
0β

jk,+βlm,+ + W 10
i;(jk);(lm);pnbi,+γjk,+γlm,+βpn,+ + (A.7)

W 11
i;jk;(lm);(pn)b

i,+γjk,+βlm,+βpn,+ + W 12
i;(jk);(lm);(pn)b

i,+βjk,+βlm,+βpn,+
}

|−〉123 .

Alternatively, one can expand in terms of the operators lij+ = αµi,+pj
µ and lij0 = pµipj

µ

but one has to bear in mind that not all of these are independent due to the momentum

conservation law p1
µ + p2

µ + p3
µ = 0 (see [30] for more details).

B. Definition of the F, G functions and their properties

The following identities hold:

[ n−1

2
]

∑

u=0

(

n

2u + 1

)

an−2u x2u =
a

2x
[(a + x)n − (a − x)n] (B.1)

[ n
2
]

∑

u=0

(

n

2u

)

an−2u x2u =
1

2
[(a + x)n + (a − x)n]

n
∑

k=0

ak(a + x)n−k = −1

x
(an+1 − (x + a)n+1)
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Then we define

F (n, 0, Y,X) =

n
∑

k=0

[ n−k
2

]
∑

u=0

(

n − k + 1

2u + 1

)

Y n−2u+1 X2u =

=
1

2

n+1
∑

k=0

(

n + 2

k

)

Y k+1 Xn−k (1 + (−1)n−k) = (B.2)

=
Y

2X2
[−2Y n+2 + (Y + X)n+2 + (Y − X)n+2]

and

F (n, 1, Y,X) =

n
∑

k=0

[ n−k
2

]
∑

u=0

(

n − k

2u

)

Y n−2u X2u =

=
1

2

n+1
∑

k=0

(

n + 1

k

)

Y k Xn−k (1 + (−1)n−k) = (B.3)

=
1

2X
[(Y + X)n+1 − (Y − X)n+1]

The function F (n, λ, Y,X), λ = 0, 1 as defined above has the property that it is an expan-

sion in even powers of X.

Using (B.1) we can show the following identities:

n
∑

k=0

Y k F (n − k, 0, Y,X) =
Y

X2
[−(n + 3)Y n+2 + F (n + 2, 1, Y,X)]

n
∑

k=0

Y k F (n − k, 1, Y,X) =
1

Y
F (n, 0, Y,X)

∂Y F (n, 0, Y,X) =
1

Y
F (n, 0, Y,X) + (n + 2)F (n − 1, 0, Y,X) (B.4)

∂Y F (n, 1, Y,X) = (n + 1)F (n − 1, 1, Y,X)

∂X2F (n, 0, Y,X) = − 1

X2
F (n, 0, Y,X) +

Y

2X2
F (n, 1, Y,X)

∂X2F (n, 1, Y,X) = − 1

2X2
F (n, 1, Y,X) + (n + 1)

Y n

2X2
+

n + 1

2Y
F (n − 2, 0, Y,X)

All of the above identities do not produce any negative powers of Y or X2. This will be

useful in appendix D.

We finally define the following functions:

Ge(n, 0, Y,X) =
n

∑

k=0

[ n−k
2

]
∑

u=0

(

n − k

2u

)

F (n − 2u, 0, Y,X)X2u =

=
Y

2X2
[−2Y 2 F (n, 1, Y,X) + (Y + X)2 F (n, 1, Y + X,X)

+(Y − X)2 F (n, 1, Y − X,X)]
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Ge(n, 1, Y,X) =

n
∑

k=0

[ n−k
2

]
∑

u=0

(

n − k

2u

)

F (n − 2u, 1, Y,X)X2u =

=
1

2X
[(Y + X) F (n, 1, Y + X,X)

−(Y − X) F (n, 1, Y − X,X)] (B.5)

Go(n, 0, Y,X) =

n
∑

k=0

[ n−k
2

]
∑

u=0

(

n − k + 1

2u + 1

)

F (n − 2u, 0, Y,X)X2u =

=
Y

2X2
[−2Y F (n, 0, Y,X)

+(Y + X) F (n, 0, Y + X,X) + (Y − X) F (n, 0, Y − X,X)]

G0(n, 1, Y,X) =

n
∑

k=0

[ n−k
2

]
∑

u=0

(

n − k + 1

2u + 1

)

F (n − 2u, 1, Y,X)X2u

=
1

2X
[(F (n, 1, Y + X,X) − F (n, 1, Y − X,X)]

The functions with arguments Y + X and Y are related. Using:

(Y + X)n+2 =
X2

Y
F (n − 1, 0, Y,X) + X F (n, 1, Y,X) + Y n+1 (B.6)

(Y + X)n+2 =
X2

Y
F (n − 1, 0, Y,X) − X F (n, 1, Y,X) + Y n+1

one can write i.e.

F (n, 1, Y ± X,X) = ± 1

2X
[(Y ± 2X)n+1 − Y n+1] = (B.7)

= ±2X

Y
F (n − 1, 0, Y, 2X) + F (n, 1, Y, 2X)

F (n, 0, Y ± X,X) =
Y ± X

2X2
[−2(Y ± X)n+2 + (Y ± 2X)n+2 + Y n+2]

=
Y ± X

X
F (n, 0, Y, 2X). (B.8)

Using all of the above we can easily show for example that

Ge(n, 0, Y,X) =
Y

2X2
[−2Y 2 F (n, 1, Y,X)

+4X2F (n − 1, 0, Y, 2X) + (Y 2 + X2) F (n, 1, Y, 2X)]

which makes it easy to expand in a single series expansion in terms of Y and X us-

ing (B.2), (B.3). Finally we will define the following compact expression which will make

the presentation of our results in the main text easier

G̃e(n, λ, Y,X; a) =
n

∑

k=0

[ n−k
2

]
∑

u=0

(

n − k

2u

)

F (n − a − 2u, λ, Y,X)X2u = (B.9)

= Ge(n − a, λ, Y,X) +

[ n−a
2

]
∑

u=0

a−1
∑

k=0

(

n − k

2u

)

F (n − a − 2u, λ, Y,X)X2u
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and

G̃o(n, λ, Y,X; a) =

n
∑

k=0

[ n−k
2

]
∑

u=0

(

n − k + 1

2u + 1

)

F (n − a − 2u, λ, Y,X)X2u =

= Go(n − a, λ, Y,X) +

[ n−a
2

]
∑

u=0

a−1
∑

k=0

(

n − k + 1

2u + 1

)

F (n − a − 2u, λ, Y,X)X2u (B.10)

C. Commutation relations

We wish to compute the commutators of pµ,i, i = 1, 2 and α+,3
µ with strings of operators

involving l3i and M33. We will use the following equation for a tensor Tρ,...:

DµνTρ,... = [pµ, pν ]Tρ,... = − 1

L2
(gνρTµ... − gµρTν...) + . . . (C.1)

We will set L2 = 1 and will reinstate it only at the end of our calculations based on

dimensional analysis.

We start first with the momenta commutators. We drop the Fock index from the

oscillators. The following computation holds:

Sν(n) = [αµD2
µν , (l32)

n] = αµ

n−1
∑

k=0

(l32)
k (ανp2,µ − αµp2,ν) (l32)

n−k−1

We can then show by induction that:

Sν(n) = −2(1 + Θn−2)M33(l32)
n−1p2,ν + nαν(l32)

n +

+2M33

n−2
∑

k=0

n−k−2
∑

u=k

(l32)
k+u Sν(n − k − u − 2) (C.2)

Some straightforward manipulations show that

Sν(1) = αν l32 − 2M33p2,ν (C.3)

Sν(2) − l32Sν(1) = αν(l32)
2 − 2M33p2,ν

Sν(n) − l32Sν(n − 1) = αν(l32)
n + 2M33

n−2
∑

k=0

(l32)
k Sν(n − k − 2) , n ≥ 3

where Θn is 0 for n < 0 and 1 otherwise.

Then by algebraic manipulations, induction and use of the formula:

m
∑

k=0

(

n + k

n

)

=

(

n + m + 1

n + 1

)

(C.4)
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we arrive at the following solution:

Sν(n) = αν

[ n−1

2
]

∑

k=0

(

n

2k + 1

)

(l32)
n−2k(M33)

k +

[ n
2
]

∑

k=0

(

n

2k

)

(l32)
n−2k(M33)

k Sν(0)

−
[ n−1

2
]

∑

k=0

(

n − 1

2k

)

(l32)
n−1−2k(M33)

k+1 p2,ν

−
[ n−2

2
]

∑

k=0

(

n − 2

2k

)

(l32)
n−1−2k(M33)

k+1 p2,ν (C.5)

It is easy to deduce that:

[p2µ, (l32)
n] = −

n−1
∑

k=0

(l32)
k Sν(n − k − 1) (C.6)

Then using (C.5) and (B.2), (B.3) we arrive at the following relation:

[p2µ, (l32)
n] = − 1

L2

[

F

(

n − 2, 0, Y,
X

L

)

αµ − F

(

n − 2, 1, Y,
X

L

)

X2 p2,µ (C.7)

−F

(

n − 3, 1, Y,
X

L

)

Y X2 p2,µ

]

− F

(

n − 1, 1, Y,
X

L

)

Sν(0)

where we have reinstated the units L and also we have set Y = l32 and X2 = 2M33. Note

that although naively it might seem that X can appear in odd powers, therefore making

no sense, actually as we mentioned in appendix A the function F (n, λ, Y,X)) always has

an even argument in the variable X.

In a similar manner we can show that:

[(l32)
n, α+

µ ] = n(l32)
n−1p2,µ − 1

L2

[

L2Y

X2

(

− nY n−1 + F

(

n − 1, 1, Y,
X

L

))

αµ

−
(

1

Y
F

(

n − 3, 0, Y,
X

L

)

+ F

(

n − 4, 0, Y,
X

L

))

X2p2,µ

+
L2

Y
F

(

n − 2, 0, Y,
X

L

)

Sµ(0)

]

(C.8)

Finally we can compute the commutators of momenta and oscillators with F (n, λ, Y,X):

[

pµ, F

(

n, 0, Y,
X

L

)]

=− 1

L2

{

G̃o

(

n, 0, Y,
X

L
; 1

)

αµ−
(

G̃o

(

n, 1, Y,
X

L
; 1

)

(C.9)

+Y G̃o

(

n, 1, Y,
X

L
; 2

))

X2pµ+L2G̃o

(

n, 1, Y,
X

L
; 0

)

Sµ(0)

}

[

pµ, F

(

n, 1, Y,
X

L

)]

=− 1

L2

{

G̃e

(

n, 0, Y,
X

L
; 2

)

αµ −
(

G̃e

(

n, 1, Y,
X

L
; 2

)

(C.10)

+Y G̃e

(

n, 1, Y,
X

L
; 3

))

X2pµ+L2G̃e

(

n, 1, Y,
X

L
; 1

)

Sµ(0)

}
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[

F

(

n, 0, Y,
X

L

)

, α+
µ

]

= ∂Y F

(

n, 0, Y,
X

L

)(

pµ+
Y

X2
αµ

)

+2∂X2F

(

n, 0, Y,
X

L

)

αµ

− 1

L2

{

L2Y

X2
G̃o

(

n, 1, Y,
X

L
; 0

)

αµ−
(

1

Y
G̃o

(

n, 0, Y,
X

L
; 2

)

(C.11)

+G̃o

(

n, 0, Y,
X

L
; 3

))

X2pµ+
L2

Y
G̃o

(

n, 0, Y,
X

L
; 1

)

Sµ(0)

}

[

F

(

n, 1, Y,
X

L

)

, α+
µ

]

= ∂Y F

(

n, 1, Y,
X

L

)(

pµ+
Y

X2
αµ

)

+2∂X2F

(

n, 1, Y,
X

L

)

αµ

− 1

L2

{

Y L2

X2
G̃e

(

n, 1, Y,
X

L
; 1

)

αµ−
(

1

Y
G̃e

(

n, 0, Y,
X

L
; 3

)

(C.12)

+G̃e

(

n, 0, Y,
X

L
; 4

))

X2pµ+
L2

Y
G̃e

(

n, 0, Y,
X

L
; 2

)

Sµ(0)

}

Finally we can easily show:

[X2p, α+
µ ] = 2pX2(p−1)αµ. (C.13)

This completes all the possible commutators needed for the computations of the next

appendix.

D. Equations for I
3

In a similar manner we can work in the I3, l33 basis. We define:

aµ (D1
µν + D2

µν) (I3)
n = Σν(n) (D.1)

aµ (D1
µν − D2

µν) (I3)
n = Ψν(n)

By induction we can show:

[p1µ + p2µ, (I3)
n] = − 1

L2

[

1

Y
F

(

n − 2, 0, Y,
X

L

)

(l31 + l32)αµ (D.2)

−
(

F

(

n − 2, 1, Y,
X

L

)

+ Y F

(

n − 3, 1, Y,
X

L

))

X2(p1,µ + p2,µ)

]

−F

(

n − 1, 1, Y,
X

L

)

Ψν(0)

where Y = I3. We can also show that

[p1µ − p2µ, (I3)
n] = − 1

L2

[

F

(

n − 2, 0, Y,
X

L

)

αµ (D.3)

−
(

F

(

n − 2, 1, Y,
X

L

)

+ Y F

(

n − 3, 1, Y,
X

L

))

X2

(

p1,µ − p2,µ

)]

−F

(

n − 1, 1, Y,
X

L

)

Σν(0)
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[(I3)
n, α+

µ ] = n(I3)
n−1(p1,µ−p2,µ)− 1

L2

[

Y L2

X2

(

−nY n−1+F

(

n−1, 1, Y,
X

L

))

αµ

−
(

1

Y
F

(

n − 3, 0, Y,
X

L

)

+ F

(

n − 4, 0, Y,
X

L

))

X2 (p1,µ − p2,µ)

+
L2

Y
F

(

n − 2, 0, Y,
X

L

)

Σµ(0)

]

Actually it is fairly easy to deduce the equivalents of (C.9), (C.10), (C.11), (C.12) for

the I3. For example the commutators of (p1,µ − p2,µ) with F (n, λ, I3,X) are deduced

from (C.9), (C.10) by substituting pi,µ → (p1,µ − p2,µ) and Sµ(0) → Σµ(0). The same for

the commutator of α+
µ .

E. The vertex for an irreducible HS gauge field

In this appendix we present the explicit computation for the BRST equations for the cubic

vertex for an irreducible HS field. In order to compute (4.2) we need

123〈−|
∑

n+2p=s−2

(I3)
n(M33)

pl33X
2
33;p = (E.1)

123〈−| −
{(

− Y s−2 + Y s−4X2

(

s − 4

s − 6

))

X2
33;0 + O(X4)

}

× (p1,µ + p2,µ)αµ
3

123〈−|
∑

n+2p=s

(I3)
n(M33)

pl+33X
1
p = 123〈−| −

{

1
∑

p=0

(

(s − 2p)Y s−2p−1

+3(s − 2p − 2)2Y s−2p−3X2

)

X2p

2p
X1

p

}

× (l110 − l220 )

+

{

1
∑

p=0

p

(

Y s−2p − Y s−2p−2X2

(

s − 2p − 2

s − 2p − 4

))

X2(p−1)

2(p−1)
X1

p

1
∑

p=0

(

− (s − 2p − 1 + D)

(

s − 2p

s − 2p − 2

)

− (D − 1)

(

s − 2p

s − 2p − 2

)

−
(

s − 2p

s − 2p − 3

)

+ 2

(

s − 2p − 1

s − 2p − 2

)

+2

(

s − 2p − 2

s − 2p − 3

) )

Y s−2p−2 X2p

2p
X1

s−2p,0,p

+

(

− (s − 1 + D)

(

s

s − 4

)

− (D − 1)

(

s

s − 4

)

−
(

s

s − 5

)

−(3D − 7)

( (

s − 1

s − 4

)

+

(

s − 2

s − 5

)))

−4

( (

s − 1

s − 5

)

+

(

s − 2

s − 6

))

Y s−4X2X1
0

}

× (p1,µ + p2,µ)αµ
3

Finally plugging the expressions above in (4.2) and making use of (6.2) we arrive at (6.3).
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